St. Joseph's College of Commerce

(Autonomous) 163, Brigade Road, Bengaluru – 560 025

Accredited with 'A++' Grade (4th Cycle) by the National Assessment and Accreditation Council (NAAC)

Recognized by the UGC as "COLLEGE WITH POTENTIAL FOR EXCELLENCE"

B.Sc. (Economics, Mathematics, and Data Analytics)

Semester I and II

Syllabus as per State Education Policy 2024 Curriculum Framework w.e.f., 2024-2025

> Academic Year 2024 - 2025 Batch 2024

BSc (ECONOMICS, MATHEMATICS AND DATA ANALYTICS)											
Category/Semest er	I	II	ш	IV	v	VI	Total Credits				
		PART A: L	ANGUAG	ES							
Languages	Lang I	Lang I	Lang I	Lang I	-	-					
4 Hrs - 3 Crs	Lang II	Lang II	Lang II	Lang II	-	-					
Part A Credits	6	6	6	6			24				
	PART B: DI	SCIPLINE-SPECIF	IC CORE 8		VE COURSES	5	I				
Major Core ECONOMICS (5 Crs)	Micro economics 5 Crs	Macro economics 5 Crs	Basic Econo metric s5 Crs	Finan cial econ omic s 5 Crs	 Internati onal Economi cs Economi cs of Growth and Develop ment 	1. Environmen tal Economics 2. Behavioural Economics					
Major Core MATHEMATICS (5 Crs)	Fundamental s of Applied Maths 5 Crs	Linear Algebra 5 Crs	Advan ces applie d mathe matics 5 Crs	Num erical Meth ods 5 Crs							
Major Core 3 DATA ANALYTICS (3Crs)	Descriptive Statistics and MS Excel 3 Crs	Advanced Statistics 3 Crs	Advan ced- Data Analyti cs 3 Crs	Intro ducti on to Mac hine Lear ning 3 Crs							
Major Core Practical 3 DATA ANALYTICS PRACTICAL (2Crs)	MS Excel 2 cr	Advanced Statistics using R Programming 2 cr	Advan ced- Data Analyti cs using R progra mming 2 Crs	Mac hine Lear ning Usin g Pyth on 2 cr							

SEP CREDIT MATRIX - Academic Year 2024-25

Major Electives					Electives	Electives	
Part B Credits	15	15	15	15	20	20	80
	PART C:	SKILL ENHANCE	VENT COL	JRSES/A	CTIVITIES		
	Indian Economy (2 Crs)	Applied Mathematica I Economics (2Crs)	Field Project (2Crs)	SEC (2Crs)	SEC (2Crs)	SEC (2Crs)	
Skill Based Courses					Research Methodo	Internship (2 Crs)	
					logy (3Crs)	Research Project (2Crs)	
Value-Based Activities		Extra- Curricular Activities 1 Cr	-	Extra - Curri cular Activi ties 1 Cr	-	Extension Activities 1 Cr	
Part C Credits	2	3	2	3	4	7	21
		PART D: COMP	ULSORY C	OURSES			
Foundation Courses	Constitutiona I Values I 2 Crs Psychological Wellbeing 1 Cr	Constitutiona I Values II 2 Crs	-	-	-	-	
Part D Credits	3	2					5
Total Credits	26	26	23	24	24	27	150

SEMESTER - I Course Code **Title of the Course** Category Lectur Credits CIA ESE Marks е Hours per week Microeconomi 5 S1 24 MC 101 Major Core 5 20 80 100 CS Fundamentals of S1 24 MC 102 5 5 80 100 20 Applied Maths Major Core Descriptive S1 24 MCT 103 3 3 20 80 100 Major Core Statistics S1 24 MCP 103 Descriptive 2 4 50 50 Major Core Statistics using Excel (Practical) Indian Economy 2 2 S1 24 SE 101 20 30 50 Skill Enhancement 3 100 3 20 80 S1 24 GE 101 **General English** Language 3 3 80 20 Language 2 S1 24 KN 101 Kannada Language 100 S1 24 HN 101 Hindi Additional English S1 24 AE 101 UG 24 CC 101 Psychological Compulsory 1 1 25 25 wellbeing course UG 24 CC 102 **Constitutional Values I** Compulsory 2 2 50 50 course **Total credits** 26 120 555 675

B. Sc. - Economics, Mathematics and Data Analytics Programme

PROGRAMM STRUCTURE CORE SUBJECTS

SEMESTER II

Course Code	Title of the Course	Category	Lecture Hours per week	Credits	CIA	ESE	Marks
S1 24 MC 201	Macro Economics	Major Core	5	5	20	80	100
S1 24 MC 202	Linear Algebra	Major Core	5	5	20	80	100
S1 24 MCT 203	Advanced Statistics	Major Core	3	3	20	80	100
S1 24 MCP 203	Advanced Statistics using R Programmin g	Major Core Practical	4	2	-	50	50
S1 24 SE 201	Applied Mathematical Economics	Skill Enhancement	2	2	20	30	50
	Language 1						
S1 24 GE 201	General English	Language	3	3	20	80	100
	Language 2		3	3	20	80	
S1 24 KN 201	Kannada						
S1 24 HN 201	Hindi	Language					100
S1 24 AE 201	Additional English						
UG 24 CC 201	Constitutional Values II	Compulsory course	2	2		25	50
UG 24 VB 202	Extra-Curricular activities	Value Added Activity	1	1		50	25
	Total credits			26	120	555	675

SEMESTER - I

S1 24 MC 101: MICROECONOMICS

COURSE OBJECTIVES

The course is designed to acquaint the students with the basic concepts of microeconomics which form the base of modern economics. The course help the student understand the functioning of the economy at the individual level.

Module 1 – Introduction to Economics 10 hrs

Introduction to Economics: Nature and scope of economics, Basic Concepts in economics, Importance of study of Economics, Understanding the economy, Mankiw's ten principles of economics.

Module 2 – Approaches to Consumer Behaviour 15 hrs

Cardinal Analysis: Utility: Law of diminishing marginal utility, equi marginal utility, consumer's equilibrium, Consumer surplus and its – application. Ordinal analysis: Meaning of Indifference curves - Indifference Schedule, Indifference Map, properties of Indifference curves Budget line - Equilibrium position, Income, Price, and substitution effects through **Hicks and Slutsky's Method**-inferior goods v/s Giffen goods, Samuelson's revealed preference theory, **Choice under risk and uncertainty**.

Module 3 - Demand Analysis 10 hrs

Meaning and Determinants of Demand, the Demand Schedule, The Law of Demand, Exceptions to the Law of Demand, Elasticity of Demand: Meaning-Types: Price, Income and Cross Elasticity, Measurement of Elasticity of Demand. Supply: Concept of Supply, the Law of Supply, and Determinants of Supply.

Module 4 – Production Analysis 15 hrs

Production Function Production Function - The Law of Variable Proportion - the Law of Returns to Scale -**Isocost- Isoquant Approach**- Least cost combination of Inputs

Module 5 - Cost Analysis 5 hrs

Cost Concepts, Cost output relationship in the short - run and long - run – Relationship between Short run and long run curves, Relationship between Average Cost and Marginal Cost

Module 6 - Market Competition 20 hrs

Concepts of Revenue: Total, Average and Marginal Revenue Curve - Price and Output determination under different markets: Meaning and features of perfect competitive market, Monopoly, Monopolistic competition and oligopoly, Price, and Output determination under these markets. **(in depth)**

SKILL DEVELOPMENT

(These activities are only indicative, and the faculty member can innovate)

- 1. Understand how economic concepts are applicable to everyday life by taking live examples.
- 2. Conduct a small survey to understand how consumer behaviour has evolved during the pandemic.
- 3. Choose a particular firm or industry and study the demand forecasting techniques.
- 4. Analyse different companies and identify which market competition they fall into.
- 5. Study the price fluctuations in the market due to changes in demand and supply.

COURSE OUTCOMES:

After the completion of the course, students will be able to:

- 1. Analyse the economic behaviour of the consumer and the firm
- 2. Explain the relationship between various variables such as Input and output, cost and output, price of the product and quantity demand and so on
- 3. Product and Factor pricing under different market structure

Books for Reference

- 1. Ahuja H.L, Advanced Economic Theory, S. Chand and Company, New Delhi
- 2. Koutsoyiannis A, Modern Microeconomics, Macmillan, London
- 3. Dominick Salvatore, Theory and Problems of Microeconomic Theory, Schaum's Outline Series, McGraw-Hill Book Company, Singapore
- 4. Ferguson C.E and Maurice S. Charles, Economic Analysis-Theory and Applications, Richard D. Irwin Inc. USA
- 5. Hubbard R. Glenn and Anthony Patrick O Brien, Microeconomics, Pearson Prentice Hall, New Jersey
- 6. Pindyck Robert S., and Daniel L. Rubinfeld, Microeconomics, Pearson Prentice Hall, New Jersey
- 7. Varian, H. R., "Intermediate Microeconomics: A Modern Approach", W. W. Norton and Company

S1 24 MC 102: FUNDAMENTALS OF APPLIED MATHEMATICS

COURSE OBJECTIVES:

This aims to provide students with a firm grasp of key matrix algebra, differential and integral calculus, and mathematical modelling. Through theoretical learning and practical applications, students will develop essential problem-solving skills relevant to mathematical analysis in addressing real-world problems.

Module – 1: Sets and functions 12 hrs

Definition of sets, set notation, types of sets, set operations (union, intersection, and difference), laws of set operations, Venn diagram and applications. Relations and Functions: ordered pairs, definition of a relation and examples, definition of a function, domain, codomain and range of a function, and types of functions (one to one, onto, many to one, and bijective) with examples. Algebraic functions -constant function, polynomial functions, rational functions and non - algebraic functions.

Module 2: Matrices, Determinants and Applications 15 Hrs.

Definition of matrix, order, Types of matrices, Determinant: Value of determinant of order 2x2 and 3x3, adjoint, row operations, inverse using formula method and row operations (2x2 and 3x3 matrices only). System of linear equations, augmented matrix, row operations, row echelon form, reduced row echelon form, existence and uniqueness of the solution, Gauss -Elimination method, Cramer's and matrix methods (2x2 and 3x3 matrices only).

Applications – Linear systems: Investment Problems, Traffic Flow, and Balancing the Chemical equations, and data encryption and decryption using a matrix and its inverse.

Module - 3: Differential Calculus 15 hrs

Functions, Limits and Continuity, Derivative of a function (concepts only), derivatives of the standard functions (excluding trigonometric functions), Rules of Differentiation: addition/subtraction, scalar multiplication, product, quotient, chain, Partial Derivatives, Maxima and Minima, and Lagrangian Multiplier-Constrained Optimization.

Applications: Cost minimization and Revenue and Profit maximization, Break Even Point, Marginal Cost, Marginal Revenue, and price elasticity of demand.

Module - 4: Integral Calculus 15 hrs

Introduction, Indefinite Integration, Standard Integrals (excluding trigonometric functions), Rules of Integration: addition/subtraction and scalar multiplication, Integration by Substitution, Integration by Parts, Integration by resolving into Partial Fractions.

Applications of Integration in business (finding cost, revenue functions from marginal cost and marginal revenue functions)

Module - 5: Differential Equations 8 Hrs

Definition of differential equation, first and second order linear homogenous ordinary

differential equation with constant coefficients and its solution.

Module -6: Mathematical modelling using differential equations 10 hrs

Definition of Mathematical modelling, Applications: Radioactive Decay, Logistic growth (fishery, rabbits' population, piggery etc.), and Exponential Growth (continuous compounding of an invested amount)

SKILL DEVELOPMENT

- 1. Visualization of solution or roots of algebraic functions and discussion of nature of the roots
- 2. To solve and visual system of linear equations with 3 variables on GeoGebra website (Math visualizer platform)
- 3. Visualization of maxima and minima of single and multivariable functions(optimization) through function plotting software.
- 4. Visualization of the solution of the differential equations.

COURSE OUTCOMES:

After the completion of the course, students will be able to:

- 1. Understand the basic concepts of sets, relations, and functions.
- 2. Perform operations in matrix algebra and solve system of equations of real-world problems.
- 3. Differentiate and optimize the function of single and multiple independent variables.
- 4. Integrate functions with single independent variable.
- 5. Solve first and second order linear ordinary homogenous differential equations.
- 6. Model and solve differential equations governing real world problems.

Books for Reference

- 1. P. N. Arora & S. Arora: Mathematics
- 2. Lay, D. C., Lay, S. R., & McDonald, J. J, Linear algebra, and its applications
- 3. Pugh, C. C, Real mathematical analysis
- 4. Fitzpatrick, P. M., Advanced calculus
- 5. D.R. Agarwal: Comprehensive Mathematics
- 6. Anand Sharma: Business Mathematics & Analytics
- 7. Ajay Goel & Alka Goel: Mathematics & Statistics
- 8. Robert R. Stall: Linear Algebra & Matrix Theory

S1 24 MC 103: DESCRIPTIVE STATISTICS AND EXCEL

COURSE OBJECTIVES

This aims to provide students with a firm grasp of basic statistical concepts. Through theoretical learning and practical applications, students will develop an essential problemsolving skill relevant to statistics and real-world data analysis and interpretation, with a focus on applications in various fields and master excel functions for precise data manipulation. Develop proficiency in data visualization through charts and graphs for clear communication of insights. Gain expertise in dashboard development for representation of dynamic systems.

Module 1: Introduction to Statistics 15 Hrs.

Definition of Statistics, Scope and Limitations, Ethics to be followed by a statistician and role of statistics in sustainable development. Data- Meaning, Collection methods, and sampling techniques, Variables and Attributes - Discrete and Continuous Variables, Classification of data based on the nature of the variable and the source of collection, Formation of Statistical Series, Frequency Distribution (univariate and bivariate) and Tabulation. Diagrams and Graphs: Line, Bar diagrams and Pie chart, Ogives, Histogram, Frequency Curve and Polygon.

Module 2: Measures of Central Tendency and Dispersion 15 Hrs.

Meaning of Central Tendency, Arithmetic Mean (Simple, Weighted and Combined), Median, Mode, Empirical relationship, Quartiles, Deciles, Percentiles (applications, importance, merits, and demerits). Definition of Dispersion, Importance of Dispersion, Range, Quartile Deviation, Mean Deviation, Standard Deviation, and their coefficients, (applications, importance, merits, and demerits).

Module 3: Skewness and Kurtosis 10 Hrs.

Definition of Skewness, Measures of Skewness: Karl Pearson's and Bowley's Coefficient of Skewness, Moments (about mean and arbitrary point), Coefficient of Skewness based on Moments. Definition of Kurtosis, Measure of Kurtosis, and Coefficient of Kurtosis based on Moments.

Module 4: Correlation & Simple Linear Regression Analysis 15 Hrs

Correlation: definition, scatter diagram, levels of correlation, Karl Pearson's Coefficient of Correlation (Direct method only), probable error and confidence interval, and Spearman's Correlation Coefficient (unique and repeated ranks) and applications. Meaning of Linear regression, general expression ($y = \beta 0 + \beta 1x + \epsilon$), types of simple linear regression equations, regression equation using method of least squares (direct method only), relationship between regression and correlation coefficients, and applications.

Module 5: Introduction to Excel 10 Hrs

Origin and Importance of Excel in Data Analysis, workbook, sheets: cells, columns, rows, ribbon and its components, table border and style, cell colour, text colour, range, formula bar and status bar, referencing: Relative, Absolute and Mixed, Mathematical operators and relations. Excel Functions - Mathematical Functions: SUM, AVERAGE, COUNT,

COUNTA, MIN/MAX, SQRT, POWER, LCM, COMBIN and PERMUT. String functions: LEN, LEFT, MID, RIGHT, CONCAT, TRIM, UPPER, LOWER, PROPER, Date Functions, Random number generators: RAND and RANDBETWEEN, Conditional functions: IF, NESTED IF, SUMIFS, COUNTIFS, and AVERAGEIFS, Data Handling Functions: VLOOKUP, HLOOKUP. Financial functions: PMT, PV, RATE, NPER.

Module 6 : Statistical Analysis using Excel 10 Hrs

Data Visualization: Bar charts, Column charts, Histogram, pie-chart, Line graphs, Sparklines, Scattered plot: linearity check and curve fitting, Chart elements and Chart designs. Interactive Dashboard Development: Pivot Table, Pivot Chart and Slicers. Measures of Central tendency: mean, median, mode, Dispersion: standard deviation, skewness and kurtosis, coefficient of correlation, simple linear regression, and estimation. What if Analysis: Goal Seek, Scenario manager, and Data table (one way and two way). **Skill Component:**

Group Project: Utilizing Excel Tools for Analysis and Presentation of Insights.

The objective of this project is to employ the necessary Excel tools to analyse a given case study and extract valuable insights and presentation the same.

Course Outcomes:

After completion of the course, the students will be able to

- 1. Illustrate the significance of statistics in analysing business problems.
- 2. Use the concept of measures of central tendency and dispersion for decision making.
- 3. Apply the concept of Correlation and Regression to analyse the data.
- 4. Proficiently utilize Excel functions for precise data manipulation, enhancing analytical capabilities.
- 5. Demonstrate proficiency in data visualization through charts and graphs, and in statistical analysis, enabling clear communication of findings.

Books for Reference:

- 1. Gupta S.P., Statistical Methods, New Delhi, Sultan Chand & Sons.
- 2. J K Sharma Business Statistics.
- 3. Akhilesh K. B. and Balasubrahmanyam S, Mathematics and statistics for Management, 1st Edition, Delhi, Vikas Publishing.
- 4. Winston, W. L., Microsoft Excel: Data Analysis & Business Model.
- 5. Lalwani, L., Excel All-In-One.
- 6. McFedries, P. Excel Formulas and Functions.
- 7. Alexander, M., & Walkenbach, J. Excel Dashboards and Reports.

UG 24 FC 101: PSYCHOLOGICAL WELL-BEING

COURSE OBJECTIVE

This course aims to nurture self-awareness and meaningful relationship skills and to help in the development of emotional quotient and inter-personal skills.

Module 1 – Introduction 3 Hrs.

Meaning of counselling – Myths and Facts related to counselling – Breaking stigmas related o seeking counselling – Normalizing seeking help – Self-reflection through concentric circles.

Module 2 – Intra-personal and Inter-personal Awareness 10 Hrs.

Meaning of self-esteem – Factors that influence self-esteem – Importance of self-esteem – Effects of low self-esteem – Qualities seen in people with high vs. low self-esteem – How to improve self-esteem – Self-awareness activity. Meaning of peer pressure – Different kinds of peer pressure – Resisting peer pressure – Confronting peer pressure – Group sharing activity. Meaning of relationships – Types of relationships – Healthy relationship dynamics – Personal Rights in a relationship – Components of a healthy relationship – Types of abuse in a relationship – Intimacy and understanding our needs – Boundaries

Module 3 – Understanding Emotions 4 Hrs.

Meaning of emotions – Role of emotions in our lives – Beliefs regarding emotions – Harmful effects of suppressing emotions – Signs of emotional suppression – Handling emotions in a healthy manner – Self-assessment activity

Module 4 – Anger management 5 Hrs.

Meaning of anger – Physical and Emotional symptoms of anger – Different ways that people express anger – Expression and experience of anger – What makes us angry and what it means when we're angry – Dealing with anger – Guided visualization and art activity.

Module 5 – Managing Anxiety/Fear 4 Hrs.

Meaning of fear – Types of fear – Physical and Emotional symptoms of fear – Different reactions to fear – Overcoming fear – Artwork followed by group sharing activity.

Module 6 - Dealing with Loss and Grief 4 Hrs.

Understanding loss and grief – Form of loss – Stages of grief – Dangers of not grieving – Dealing with grief – Ways to help others in grief.

COURSE OUTCOMES

After completion of the course, the students should be able to:

- 1. Develop a better emotional quotient.
- 2. Formulate a healthier sense of self through self-awareness.
- 3. Build more meaningful relationships.
- 4. Display an improvement in inter-personal skills.
- 5. Modify thought and belief patterns.

S1 24 AR 101: CONTEMPORARY INDIAN ECONOMY

Course objectives

- To familiarise students on the current problems of Indian Economy
- Identify solutions through specific policies.

Module 1: LPG Policies and Economic Reforms 5 hrs

f LPG-Economic reforms under the New economic policy – globalisation, privatisation, and liberalisation -Niti Aayog – functions and its role in India's economic development

Module 2 NITI AYOG and Economic Development 10 hrs

NITI Aayog and goals of SDG, programs of the govt- priorities of economic growth and employment, education, health and gender, environmental concerns, clean water, energy security, poverty alleviation and income inequality (overview of different programs). Population and demographic dividend. Human development Index, Hunger Index, Gross Happiness Index,

Module 3 Economic Reforms in Agriculture and Food management 10 hrs

Green revolution- Agricultural Finance-Agriculture price policy, minimum support priceprocurement prices and issue price- zero hunger, public distribution system. MGNREGA-Agriculture and WTO (overview)

Module 4. Industry, innovation, infrastructure 10 Hours

New Industrial Policy 1991- public sector reforms, privatisation and disinvestment, entrepreneurship- competition policy. Role of MNCs in industrial development- economic and social infrastructure-roads, railways, airports tele density (overview).

Module 5. Monetary, Fiscal Policy and External Trade 10 Hours

Monetary Policy – RBI- Monetary policy -banking privatisation, role of SEBI. Fiscal Policy -Finance Commission and its role– Fiscal federalism. India's foreign trade- volume, direction, and composition (latest trends)- FDI –Meaning, trends and patterns- India's balance of payment since 1991.

Skill Development:

- 1. Using case study analyse the U N sustainable development goals.
- 2. Draft a diagrammatic representation of inflation rates for specific products using secondary data from websites
- 3. Using a chart to show impact of MNREGA works.
- 4. Using secondary data analyse India's direction of trade in the last 5 years.
- 5. Using secondary data analyse India's volume of trade in the last 5 years.

Course Outcomes

After completion of the course the students will be able to:

- 1. Understand the current problems of Indian Economy
- 2. Analyse the sector specific policies adopted for achieving the aspirational goals.
- 3. Review various economic policies adopted.
- 4. understand the history of Economic planning in India.
- 5. understand the sectoral reforms through LPG policy.

BOOKS FOR REFERENCE

- 1. Ramesh Singh. 2022 The Indian Economy, Tata McGraw Hill
- 2. Byres Terence J. (ed.), (1998), The State, Development Planning and Liberalisation 'in India, Delhi,
- 3. Dutt Ruddar and K.P.M Sundaram (2011): Indian Economy, S Chand& Co. Ltd. New Delhi
- 4. Frankel Francine R., (2004), India's Political Economy, Delhi.Jenkins Rob, 2000, Economic Reform in India, Cambridge,
- 5. Jalan, B. (1996), India's Economic Policy- Preparing for the Twenty First Century, Viking, New Delhi.
- 6. Joshi Vijaya and L.M.D. Little, (1998), India's Economic Reform 1991-2001, Delhi,
- 7. Kapila Uma: Indian Economy: Policies and Performances, Academic Foundation
- 8. Mishra S.K & V.K Puri (2001) "Indian Economy and –Its development experience", Himalaya Publishing House.
- 9. Mukharji Rahul (ed.) (2007), India's Economic Transition: The Politics of Reforms, edited by Rahul Mukherji, Oxford University

SEMESTER II

Semester	CourseCourse Title:CourseCourse							Credits			
	C	ode	Macroeconom	Duration	Type:	Hou	rs	:			
II	S1 2	24 MC	ics	:	MCT	Pei	r	5			
	2	201		75 hrs		weel	k:				
		1				5					
Course	The c	objective	e of this course is t	o explore an	d understar	nd basic	conc	cepts			
Objectives:	relate	ed to Na	tional Income. Th	e course wil	l also help fa	amiliari	ze th	e			
	stude	ents wit	h the Keynesian T	heory of Inco	ome and Em	nployme	ent. F	urther,			
	the co	ourse er	ntails understandi	ng different j	policies and	debates	s und	ler			
	macroeconomics.										
Course	T2	CO	Explain the conce	pt of Nation	al Income ai	nd meth	nods (of its			
Outcomes		1 estimation.									
	T4	4 CO Analyse the relationship between Macroeconomic variables									
		2									
	T2	CO	Describe the deter	rmination of	income and	l emplog	ymer	nt under			
		3	Classical and Keynesian framework								
	T2	CO	Discuss with the students the monetary and fiscal pol								
	T /	4	their effectiveness	s in the regul	ation of the	econom	ny.				
Module 1	Iodule 1 Introduction to Macroeconomics Identifies No of Hour										
15											
Nature of Ma		June of fl	s and its significan	ce, mulcator	s of Macro		nc Ac	LIVILY -			
Key Concept	S: Stoc	k and n	ow variables- 1 wo	o Sector Moc	iei, înree Se	ector MIC	Juer a	and Four			
Mossuremon	t of M	acro Va	riphlas and Econo	mic Porform	anco: Natio	nal Inco	mo				
Accounting	Impo	ació va	mante CNP CD			DI Dool					
Nominal CD	лпрол р сг	D dofla	tor Mathad of as	timating Nat	tional Incom	1- Keal	ondi	versus			
Mothod Inco	1 - GL	othod	Value added or N	Initiating National	nothad Dif	ficultion	in N	Intional			
Income Acco	unting	Trong	de in CDP in India	CNP and (Duality of L	fo Not	F Ecor	nomic			
Wolfaro Cru	unung on Inc	g - Heik				lie - Ivei	LECO	lonne			
Wellare - Gre		lonie									
Module 2	Build	ling Blo	ocks of Macroecon	nomic Analy	vsis		Νοο	f Hours:			
		8			010		15				
Simple Keyn	nesian Theory-Aggregate Demand (AD) curve, Aggregate Supply (AS) curve,										
Sources of sh	hift in AD and AS, Equilibrium in National Income and Price level,										
Unemploym	ent and	d Natio	nal Income, Inflati	on and Uner	mployment,	Circula	ar flov	w of			
Income, Goo	ds mai	rket and	l Money Market- I	Phillips Curv	ve-Opel's La	W					
Module 3	Class	sical Th	eory				No o	f Hours:			
							15				
Introduction	to Cla	ssical th	neory of employm	ent - Basic A	ssumptions	of the C	Classi	ical			
School - Say's	s Law	of Mark	ket - Determinants	of Output, I	Employmen	t, Savin	gs,				
Investment,	Wages	, Prices,	Interest Rate - Eq	uilibrium Ot	utput and E	mployn	nent-				
Implications	of Cla	ssical Fi	ull Employment N	Iodel - Critic	al Evaluatio	on –					
Module 4	Keyn	nesian N	Aacroeconomics				No o	f Hours:			
						· · · · · · · · · · · · · · · · · · ·	15				

Г

1

Principle of effective demand - Keynesian theory of output, income and employment – Concept of Multiplier and accelerator-IS-LM curve-General Equilibrium of Product and Money Market-Extensions of IS-LM Model

Mod	lule 5	Keyne	s Psyc	holog	ical la	w of o	consu	nptio	n			No of 10	Hours:
An O	verview	v of Post	Keyn	esian	theori	es of c	onsun	nptior	n: abso	lute ir	ncome,	relative	9
incom	ne, pern	nanent i	ncome	e & life	e cycle	hypo	thesis	- Mul	tiplier	and A	Accelera	ator An	alysis -
Margi	inal Effi	ciency o	of Cap	ital - I	Releva	nce ar	nd Crif	tique o	of Key	nesiar	n Macro	peconoi	nics
Mod	lule 6	Monetary and Fiscal PolicyNo of Hour5										Hours:	
Mone	etary Po	licy: Ob	jective	es and	Instru	iments	5						
Fiscal	Policy:	Objecti	ves an	d inst	rumer	nts							
Effect	iveness	of Mon	etary	and Fi	scal P	olicy							
	Skill L	Develop	ment:										
-	1	Segreg	ate di	fferent	t econo	omic i	ndicat	ors in	to stoc	ck and	flow c	ompon	ents.
	2	Condu	ct a st	udy o	n the i	nflatio	onary	trends	durir	ng the	last ter	ı years.	
	3	Calculation the onl	ate the ine d <i>a</i>	e diffei Itabase	rent na es.	ationa	l incor	ne est	imates	s from	actual	data th	rough
4	4	Analyz	ze the	releva	nce of	Keyn	esian	theory	[,] in mo	odern	Indian	Econor	ny.
	Book f	or Refe	rence:										
	1	Ahuja Compa	H L (2 anv Pv	013) N rt L.td.	/acroe New 1	econor Delhi	nics: T	Theory	v and l	Policy	, S Cha	nd &	
	2	Manki	w N. C	Gregoi	ry, (20	12) Ma	acroec	onom	ics, W	orth P	ublishe	ers, Nev	w York
3	3	Shapir Pvt. Lt	o Edw d. Nev	ard, (2 v Dell	2004) I ni	Macro	econo	mic A	nalysi	s, Gal	gotia P	ublicati	ons
	4	Ackley New Y	Gard	ner, (1	.978) N	Aacroe	econor	nics: [Theory	y and]	Policy,	Macmi	llan,
ĩ	5	Dornbu 11th Eq	usch, 1 1 2010	R., Fise	cher, S	and	Startz,	, R., "I	Macro	econo	mics",]	McGrav	w-Hill,
(6	D'Souz	za E., '	'Macro	oecono	omics'	", Pear	son E	ducati	ion, 20	09		
	7	Froyen Macmi	Richa llan P	ard T. ub., C	(2013) ompai	Macr	oecono	omics	-Theor	ries an	d Polic	ies,	
8	8	Hubba	rd R. (Glenn	and A	nthor	ny Pati	rick O	'Brien	, (2012) Macr	oecono	mics,
		Pearso	n Prer	itice, r	New Je	ersey,	USA						
	Mapping of CO and PO												
	CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
	0	1	2	3	4	5	6	7	8	9	0	1	2
	CO1	Н	М	L		М	L	L				L	
	CO2	L	H	M	L		M		H				H

CO3	L	Η	М		L	М	Η		М	Η
601	-			-						
CO4	L	Н	Μ	L	Μ			Н		М
		TT	N	М	т	т	N	TT	т	
05		п	IVI	IVI	L	L	IVI	п	L	
CO6		H	Μ	Μ	L		Н	L	Μ	

Semester	Cour	se Code	Course Title:	Course Duration :	Course Type:	Teaching Hours Per week:	Credits :			
II	S1 24	MCT 203	Advanced Statistics	Advanced45Theory3Statistics						
Course Objectives:	The c probab theoret technic profici proble impler decisic	probability theory, statistical distributions, and inferential statistics. It focuses of theoretical and applied aspects of probability functions, distribution models, samplin techniques, and hypothesis testing. By exploring real-world data, students will gai proficiency in using statistical tools to make informed decisions, solve comple problems, and analyse large datasets. The course emphasises the practical implementation of statistical methods, fostering critical thinking, analytical skills, an decision-making capabilities for data-driven environments.								
Course Outcomes with T Levels	CO1	Illustrate the scope of Probability and its application for determination of certainty of possible outcome of event in real world uncertain problems.T								
	CO2	Apply Bi situations	nomial and Poiss involving discre	on distributic te data.	ons to model r	eal-life	Т3			
	CO3	Understa: interpret	nd Uniform and N large datasets, wi	Normal distri	bution models fitting the No	to analyse and ormal curve.	T2			
	CO4	Different and stand	iate between varie lard error for popu	ous sampling ulation mean	methods and estimation.	distributions,	T4			
	CO5	Apply hy in various	pothesis tests using research scenari	ng t, z, χ^2 , AN os.	NOVA to eval	uate hypotheses	5 T3			
Module 1	Introd	luction to	Probability			No of Hours:	8			
Definition of Pr and Independen Multiplication 7 (statement only)	Probability- Sample Space - Favourable Events - Mutually Exclusive Events - Dependent ent Events - Permutations and Combinations (application-based problems) - Addition, and n Theorem of Probability (statement only) - Conditional Probability and Bayes theorem ly), Importance and application-based problems.									
Module 2	Discre	ete Probab	ility Distribution	18		No of Hours:	8			
Random Variable- Expectation-Variance, Theoretical probability distributions - Bernoulli Distribution definition-properties-importance, Binomial distribution- definition- properties -importance applications - fitting a Binomial distribution, Poisson Distribution- definition- properties -importance fitting a Poisson distribution- applications.										
Module 3	Contii	nuous Pro	bability Distribu	tions		No of Hours:	6			

Uniform distribution-definition-properties-importance-application, Normal distribution – introductiondefinition –properties -Probability Density function- expected value- variance, importance applications, Standard Normal Distribution, Fitting a Normal distribution.

Module 4	Sampling Distributions	No of Hours: 6
Population and	Sample- parameter and statistic, Sampling Techniques	(Probability and Non-
Probability), M	lean and Variance, Stand Error and properties ,Sampling Dis	tributions - Chi-square, t-
distribution, and	F distributions. Central Limit Theorem (statement only)	

Module 5	Hypothesis Testing	No of Hours:17

Meaning and Importance of Hypothesis - Formulation of Null and Alternative Hypothesis - Level of Significance -Type I and Type II Errors - Hypothesis Testing- t-test for mean (one sample, two- sample and paired), Confidence interval, z-test for mean (one sample and two- sample), Chi-square test - Importance and applications problems (Goodness of fit -Uniform, Binomial, and Poisson distribution and test for independence of attributes), ANOVA and F statistic- Meaning- Need- Procedure-Assumptions- One-Way - Post-hoc test -Applications.

Book for Reference: (Strictly APA Format)

1	Hoel, P. G. (2022). Statistics for behavioural sciences. Macmillan.
2	Gupta S.P. (2019), Statistical Methods, Sultan Chand and Sons, New Delhi.
3	J.K.Sharma, (2017), Quantitative Techniques for Management, Macmillan, New Delhi.
4	Croxton, F. E., Cowden, D. J., & Klein, S. (1973). Applied general statistics (3rd ed.). Prentice Hall Inc.
5	Goon, A.M., Gupta, M.K., and Das Gupta, B. (1991). Fundamentals of Statistics, Vol. I, World Press, Calcutta.

Mapping of CO and PO

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	М	Н	М						М	М
CO2	Н	М	М	L	Н						М	М
CO3	Н	Н	Н	Н	L						М	М
CO4	М	Н	Н	Н	М						L	L
CO5	Н	М	М	М	Н						М	М

Semester	Cour	se Code	Course Title:	Course	Course	Teaching	Credits				
				Duration	Type:	Hours Per	•				
				:		week:					
, TT	G1 04		A 1 1	(0)							
11	SI 24	MCP 203	Advanced	60	Practical	4	2				
			R								
Course	Develo	op proficie	ncy in conducting	g explorator	y data analysis	(EDA) and u	ıtilizing				
Objectives:	data v	isualization	n techniques in I	R to extract	insights and p	patterns from	diverse				
	dataset	datasets, ultimately aiding in informed decision-making processes in data analytics.									
Course	CO1	CO1 Use mathematical operators and logical and conditional statements on 3									
Outcomes		R for solving basic mathematical problems.									
with T Levels	CO2	Use inbui	It statistical funct	tion in R for	Descriptive Sta	atistical analys	is 3				
		and interp	pretation.		-	-					
	CO3	Use data	visualisations too	ls on R to dr	aw insights fro	m the raw dat	a 4				
		taken from	n various sectors		C						
	CO4	Use the re	elevant inbuilt hy	pothesis testi	ng functions to	o test the	4				
		hypothesi	is and its significa	ance for bette	er decision mal	king in various					
		fields like	e medicine, comm	nerce, engine	ering etc.						
	CO5	Use regre	ession tools and fu	inctions avai	lable on R for	fitting the best	4				
		curve for	the original data	with minima	l error to make	reliable					
		estimation	ns and prediction	S							
Module 1	Introd	uction to]	R		1	No of Hours:	12				
Introduction to	R Prog	ramming 1	Language, R Stu	dio Environ	ment, Basic D	ata Types: N	umeric,				
Character, Logi	cal, Bas	ic Operatio	ons: Arithmetic, L	ogical, Relat	ional, Introduc	tion to Function	ons and				
Control Structu	ires (co	nditional a	and looping), Us	ser defined	function, Han	ds-on Exercis	ses and				
Assignments	•										
Module 2	Descri	ptive Stat	istics using R		1	No of Hours:	12				
Data Structures:	Vectors	s, Matrices	, Lists, Data Fram	es: Creation,	Manipulation,	and Sub settin	ig, Data				
Import and Exp	ort: CS	V, Excel, 7	Fext files, Introdu	uction to R l	Packages and I	Libraries, Des	criptive				
Statistics: measure	ures of c	entral tend	ency (mean, med	ian, mode), a	ind measures o	f dispersion (s	tandard				
deviation, varia	nce, ran	ge)-Analys	sis and Interpreta	tion: Applica	tion of descrip	ptive statistics	in data				
analysis.											
Module 3	Data Visualisation and Exploratory Data AnalysisNo of Hours: 11										
Data Visualizat	/isualization: Scatter plot, Bar plot, pie chart, histogram, boxplot. Line graphs. multiple bar										
diagram, and	ggplot l	ibrary, m	issing values an	d outliers'	analysis. Han	ds-on Exercis	es and				
Assignments an	d Explo	ratory Data	a Analysis (EDA))	, ,						
Module 4	Hypot	hesis Testi	ing using R		I	No of Hours:	15				
Hypothesis Test	ing- t-te	st for mean	n (one sample. tw	o- sample an	d paired). z-te	st for mean (or	ne sample				
	e) Chi-	square test	-applications pr	oblems (Goo	dness of fit -U	Jniform, Bino	mial. and				

Poisson distribution and test for independence of attributes), ANOVA and F statistic- One-Way - Applications.

Module	e 5	Analy	tical St	atistics	using	R				No	of Hou	rs: 10
Correlatio	n: Sca	ttered d	iagram	, Pearso	on's an	d Spear	rman's	correla	tion co	efficient	s, Data	Linearisatio
and Regre	ession A	Analysis	s: Simp	le Line	ar regr	ession,	Residu	al Plot	, applic	ations a	nd interp	pretations.
Skill Com	iponei	nt:										
1.		Exploratory Data Analysis (EDA) and utilizing data visualization techniques to extract insights and patterns from data sets using R.										
2.		Diagra	mmatic	and G	raphica	al repre	sentatio	on of da	ata usir	ıg R.		
3.		Condu	ct hypo	thesis t	ests us	ing R, i	interpre	et result	ts, and	make in	formed of	decisions
		based of	on stati	stical ir	nferenc	e.						
4.		Classif	ication	and Re	egressio	on Ana	lysis or	n R.				
Rook for	Refere	nce (S	trictly	APA F	ormat)						
DUUK IUI			uncuy		ormat	,						
1.		Provost, F., & Fawcett, T. (2013). Data science for business: What you need about data mining and data-analytic thinking. O'Reilly Media.									need to know	
2.		Wickham, H., & Grolemund, G. (2017). R for data science: Import, tidy, t visualize, and model data. O'Reilly Media.								, transform,		
3.		Zuur, A Spring	4. F., Ie er.	eno, E.	N., & I	Meester	rs, E. H	[. W. G	. (2009). A beg	inner's g	guide to R.
4.		Specto	Spector, P. (2008). Data manipulation with R. Springer.									
Mapping	of CO	and P	0									
	DO1	DO1		DO4	DO5	DOC	D07	DOQ	DOD	DO10	DO11	DO12
CO/PO	POI	PO2	PUS	PO4	P05	PU6	PO/	PU8	P09	POIU	POII	POIZ
CO1	Н	Н	M	Н							M	M
001	11		111	11							111	111
CO2	Н	М	М	L							М	М
CO3	Н	Н	Н	Н							М	M
CO4	M	Н	Н	Н							L	L

М

М

Η

М

М

М

CO5

	Course	Cours	Course	Cours	Teaching							
Semester: II	Code:	e	Duration	e	Hours	Credits: 5						
	S1 24	Title:	: 75 hrs	Type:	Per							
	MC 202	Linear		Theor	week: 5							
		Algebr		У								
		a										
Course	This aims	s to provide stu	dents a firm gra	asp of key lin	near algebra	concepts, including						
Objectives:	matrices,	vectors, syst	tems of equat	ions, and	eigenvalues	and eigenvectors.						
	Through	theoretical le	arning and pra	actical appl	ications, stud	lents will develop						
	essential	problem- solvi	ing skills releva	ant to mathe	matical anal	sis and real-world						
	data inter	pretation, with	a focus on app	lications in	machine lear	ning (Linear model						
~	fit) and d	tit) and data analysis.										
Course	CO1	Understand t R^3 ,	he fundamenta	l concepts	of vectors in	$\mathbf{n} \mathbf{R}^2$ and $\mathbf{T2}$						
Outcomes		including v applications	ector operatio	ons, geome	tric propert	ies, and						
with T levels		in physics (fo	orce analysis) a	nd Image Pr	ocessing							
	CO2	Apply the co	oncepts of mat	rix rank, so	lutions to sy	vstems of T3						
		equations, an	d their applicat	tions to real	-world probl	ems such						
		as			1	-1						
		network now	, trainc now,	and chemica	al equation b	alancing,						
		Gauss-Iordar	elimination									
	CO3	Understand x	vector spaces	ubenacae k	ases and di	mansions T2						
	005	to	rector spaces, s	subspaces, t	ases, and un							
		explore their	properties and	solve related	1 problems.							
	CO4	Solve prob	lems involvir	ng linear	transformat	ions by T3						
		understanding	g	0								
		their definiti	ons, properties	s, and appl	ications in	computer						
		graphics.										
	CO5	Solve proble	ems involving	eigenvalue	es and eige	nvectors, T3						
		including		1								
		characteristic	equations and a	applications	to Markov C	nains and						
		Cavley-Hami	lton theorem									
	CO6	Apply tech	non meorem.	ving inco	nsistent sv	tems of T3						
		linear	194005 101 501	, ing mee								
		equations, fo	ocusing on sol	ution appro	oximation us	ing least						
		squares,	C	11		-						
		normal matri	x equations, an	d linear regr	ession mode	S.						
Module 1	Vectors				No	of Hours: 12						
Vectors in R ⁿ posi	tion vector	rs. Length of a	vector. unit v	ector. parall	elogram law	of vector addition						
algebra of vectors	(addition.	subtraction a	nd scalar mult	iplication).	Dot product	Cross product of						
vectors, Scalar tri	ple produ	ct, Colinear,	Coplanar and	orthogonal	vectors, pro	perties, area of a						
parallelogram and	volume of	a parallelopipe	ed, graphical re	presentation	in \mathbb{R}^2 and \mathbb{R}	³ , and Applications						
- Force, Resultant f	force and d	isplacement pr	oblems, Mean	shift theory	in Image pro	ocessing(overview)						
Module 2	System o	of Linear Equa	ations		No	of Hours:15						

Recapitulation (Matrices, Algebra of matrices, Elementary Row operations and Echelon form), Rank of a matrix by reducing to row reduced echelon form, System of Linear Equations with real coefficients, Matrix form of System of Linear Equations, Augmented Matrix, Solution through Gauss Jordan method, Criteria for Existence and Uniqueness of the solution, linear combinations of vectors, linear span of vectors, vector equation of system of linear equations, parametric vector form of the solution set, linear independence and dependence of vectors, Applications of linear systems: Network flow->Traffic Flow

Semester	Course Code S1 24 SE 201		CourseCourseCodeTitle:S1Applied24MathematSEical201Economics		Course	Teachi	Credits: 2					
Π					SE	ng Hours Per week: 2						
			. 15									
Course	The N	Mather	natical Econo	mics cou	rse provic	les essent	ial ma	thematical				
Objectiv	tools	for eco	onomic analy	sis, cover	ing functi	ons (linea	r, non	-linear,				
es:	logar	1thmic	, and expone	ntial) and	l their app		to dem	hand,				
	supp	ly, and	l market equi	librium. S	Students v	vill learn	matrix	algebra,				
	differ	ential	calculus, opt	imization	i technique	es, and in $\mathbf{P}_{\rm res}$	tegrati	ion for				
		lating	consumer and producer surplus. By the end, students									
	will t	be ade	of at applying these mathematical methods in economic									
Course	T2	CO	Describe the Role of Mathematics: Students will evelop									
Outcome	12	1	the role of mathematics in economic analysis									
s		-	identifying its uses and limitations									
-	Т3	CO	ApplyMatrix in Economic Analysis: Students will solve									
		2	economic problems using elementary matrix algebra.									
			including determinants and simultaneous equations									
			through Cra	imer's rul	le and mat	rix invers	sion					
	T3	CO	Apply differ	rential cal	lculus to a	nalyze ela	asticity	7,				
		3	consumer be	ehavior, p	production	n function	is, and	cost				
			analysis, inc	luding pi	roblems re	elated to r	narket					
			equilibrium	and mon	opolies							
	T2	CO	Demonstrat	e proficie	ncy in inte	egral calc	ulus, a	pplying it				
		4	to calculate	consume	r and proc	lucer surj	olus ar	nd solving				
			linear progr	amming	problems							
Module	Intro	ductio	on to Mathem	I	No of							
1	Hours:											
	10											
Introducti	ion –R	ole of	Mathematics	in Econo	mic Anal	ysis-Uses	and li	imitations.				
Applicatio	ns of	t ma	thematical	functions	- Demai	nd and	supp	oly-market				

Module Application of Matrix in Economic Analysis	No of
---	-------

2	Hours:
	5

Application of Cramer's rule and matrix inversion- input-output analysis- inputoutput table- matrix of technical coefficients.

Module	Application of Differential Calculus in Economic	No of
3	Analysis	Hours:
		10

Limits and Derivatives -ordinary and partial differentiation- elasticity, consumer behaviour, production functions, revenue and cost analysis market structure problems- monopoly, discriminating monopoly, duopoly, and Oligopoly.

Module	Optimization and Integration	No of
4		Hours:
		5

Constrained Optimisation(maxima-minima). Application of integral calculusdefinite and indefinite integration - consumer's surplus-producer's surplus.

Lists of tools can be used for solving the problems in the modules

1) Excel

2)https://www.derivative-calculator.net/

3)https://www.integral-calculator.com/

4) https://www.wolframalpha.com/calculators/integral-calculator/

5) https://www.wolframalpha.com/calculators/derivative-calculator/

	Skill Development:
1	Create graphs for various economic functions (demand, supply)
	using Exce
2	Solve real-world input-output problems using matrix algebra.
3	Work on case studies that require linear programming to allocate
	resources efficiently.
4	Conduct research on the application of mathematics in a specific area
	of economics, such as econometrics
5	Use software (R/Python) to simulate economic models and analyze
	outcomes.
	Book for Reference: (Strictly APA Format)
1	Mas-Colell, A., Whinston, M. D., & Green, J. R. (2021).
	Microeconomic theory (3rd ed.). Oxford University Press.

2	Varian	, H. I	R. (20	14). I	ntern	nedia	ite m	icroe	conoi	mics:	A mo	dern	
	approa	ach (9	th ec	ł.). W	. W. 1	Norto	on &	Com	pany				
3	Simon, C. P., & Blume, L. E. (2015). Mathematics for economists (2nd												
	ed.). W. W. Norton & Company.												
4	Kreps, D. M. (2013). Microeconomics for managers. W. W. Norton &												
	Company.												
5	Chiang, A. C., & Wainwright, K. (2005). Fundamental methods of												
	mathematical economics (4th ed.). McGraw-Hill.												
6	Taha, H. A. (2007). Operations research: An introduction (8th ed.).												
	Pearson.												
	Mapping of CO and PO												
	CO/	P	P	P	P	P	P	P	P	P	PO	PO	PO
	PO	0	0	0	0	0	0	0	0	0	10	11	12
	601	1	2	3	4	5	6	7	8	9	-		
	COI	L	M	L	Н		M	Н			L		Н
							-						
	CO2	L	Μ		Η			M	Η			L	
	CO3	L	Μ	L	Η		Μ	H				M	
	CO4	L	L	Н		Μ	Μ		Н				Н
	CO5												
	CO6												
	1 1	1		1									